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Abstract 
Capturing requirements,  and  managing tradeoffs among 
them, are critical yet complex activities. Well-designed 
computerized tools can effectively support these 
activities. A key  challenge  in construction of these 
support tools is  how to scale them to handle  a large 
volume of information.  Particularly crucial are the ways 
in  which large  numbers of requirements  and their 
interrelationships are presented  to users.  They need to 
be  able  to zoom in and  out through the space of 
information so as to be  able to  see the big picture, and  to 
locate and focus on speclfic details when needed. This 
paper describes a harmonious combination of 
techniques that support  such  scalabili@. 
The techniques have  been embodied in a NASA tool, 
DDP, for defect  detection  and prevention. They have 
been exercised in uses of this tool for requirementshsk 
tradeoffs, and  population of this tool to  capture 
institutional knowledge-bases of information. 

1. Introduction 

1.1. Requirements  Interaction  Management 
Arriving at a set of requirements that is both 

beneficial (meets customer needs) and cost effective 
(can  be implemented at reasonable cost) is an important 
early step in software development. [Karlsson & Ryan, 
19971 reports two case studies of commercial projects 
that reveal the value of this. In the first study they found 
that by judiciously selecting a subset of requirements, 
94%  of the software system’s maximum possible value 
to its customers could be met at 78% of the cost for 
implementing all requirements. The second study had 
figures of 95% of possible value at 75%  of cost. 

Determining the set of requirements to implement can 
be  far from easy, especially when requirements interact 

with one another, or are still evolving. [Robinson et al, 
19991  coin the term “Requirements Interaction 
Management” to cover this challenging area. Their 
definition reads: 

“Requirements Interaction 
Management is the set of activities 
directed towards the discovety, 
management,  and disposition of 
critical  relationships  among sets of 
requirements.” 

Robinson et a1 survey seven projects that offer 
support for requirements interaction management, 
providing a wide variety of automated support for 
various aspects of the process. 

The challenges stem  from three sources: the sheer 
number of requirements and interactions, and the fact 
that requirements lie at the critical boundary between 
human understanding and machine representation, and 
the evolving nature of requirements as peoples’ 
understanding improves. Human involvement is 
indispensable, yet manually applied processes quickly 
become tedious. 

For example, Ryan & Karlsson employ the Analytic 
Hierarchy Process [Saaty,  19801 to establish 
prioritization of requirements by painvise comparisons 
among them. In  [Ryan & Karlsson  19771 they state, “The 
process was tedious, and was only realistic for small 
(<20) sets of requirements. Neither did it take account of 
the interdependencies between requirements that 
frequently occur in real projects.” They go on to describe 
a prototype tool to support the process, now a 
commercial product Focal PointTM [Focal Point AB]. 

At NASA, we face similar challenges of requirements 
interaction management. One area of particular concern 
is risk management, where risks are  the  things that, 
should they occur, will lead to loss of requirements. 
Determining the impact of risks is done by quantitatively 
interrelating risks with requirements. A wide variety of 
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mitigation strategies are available to  decrease risk, and 
thereby increase likelihood  of attaining requirements. 
Determining the effectiveness of mitigations is done  by 
quantitatively interrelating mitigations with risks. 
Appropriate selection of risk mitigations must  balance 
their costs (budget, schedule, etc.) against their benefits 
(risk reduction). Like Ryan & Karlsson,  we  recognized 
early on that tool support was essential to  support  this 
process. In building this tool support  we  have  found 
scaling to a large number  of  requirements, risks and 
mitigations is of  key  importance if the tool is to  be 
effective. Particularly crucial are the ways in which large 
numbers  of objects and their interrelationships are 
presented  to users to assist their decision-making. 

The purpose  of this paper is to present realization of  a 
harmonious combination of  techniques that support  such 
scalability. While these have  been  designed  for  our 
particular application (risk management for spacecraft 
flight systems), we feel that many of  our approaches 
would  have benefit to other tools that support 
requirements interaction management. 

The  remainder of this paper is organized as follows: 
Section 2: An overview of NASA’s Defect  Detection 

and Prevention process, the objective of  our tool support. 
This is the source  of  our  examples  throughout the paper. 

Sections 3 - 6:  key mechanisms that support 
scalability. Each is introduced in general terms, then the 
DDP solution is  presented  and discussed. 

Section 7: Future Work 
Section 8: Related  Work  and Conclusions 

2. NASA’s Defect Detection and 
Prevention (DDP) Process 

NASA’s  Defect  Detection and Prevention  (DDP) 
process  [Cornford, 19981  is a method for optimizing  the 
collection of mitigation activities performed on a project. 
It allows  one  to perform overall risk management for 
flight systems.  Since these prevention  and  detection 
activities incur costs (e.g.,  budget  and schedule), their 
selection must tradeoff their costs against their benefits. 

The principal elements  of DDP are: 
Requirements - the desired goals. 

*Failure  Modes  (FMs) - the risks that, should  they 
occur, cause loss of  requirements. 

Preventions (typically design measures),  Analyses, 
process  Controls (e.g., parts selection) and Tests 
(PACTs). 

*Impact - a quantitative measure  of  how  much loss 
of requirement is caused  by  an  FM. 

Effectiveness - a quantitative measure of  how  much 
a PACT  reduces the likelihood of a FM. 

The DDP process requires tool support to be 
effective, because it must manage quantitative 
relationships amongst numerous elements.  Furthermore, 
it  must  allow real-time brainstorming. Proof-of-concept 
studies employed  a spreadsheet-based implementation. 
Their success established the value of the process, but 
revealed the cumbersome nature of the prototype 
spreadsheet-based implementation. NASA  Code Q then 
funded an effort to  develop a user-friendly tool for 
performing DDP. All  of the examples in the sections that 
follow are drawn from this tool. 

2.1. DDP: an  example  application. 

A  prototype  of the tool was applied last year  to 
several non-trivial design activity. A typical one  of these 
culminated in the capture  of 67 requirements, 105 FMs, 
and 93 PACTs. A representative screen  display  of this 
data is  shown  in Fig. 1. (Note: the names of 
requirements, FMs and PACTs have been deliberately 
garbled so as to protect  potentially sensitive 
information.). This  same data set is used  as the source  of 
all the examples shown in  this  paper. 

The DDP tool employs familiar mechanisms  to 
display various aspects of this information. Trees are 
used to display the hierarchy. For example, in Fig. 1 a 
portion  of the requirements hierarchy can be seen in the 
window  labeled “Rqmts” towards the top left of the 
screen. To its right, a similar  window labeled “FMs” 
displays the hierarchy  of FMs.  Bar charts are used to 
display  summary numerical information. For  example, 
the expected  degree to which the currently selected 
requirements will be  met is  shown  in the upper  bar chart 
labeled “Requirements (log scale)”. Below it, a 
similar window labeled “Risk Balance (log scale)” 
displays the expected impact  of each  of the currently 
selected FMs.  In the sections that follow  we will also see 
two matrices, used  to display interrelationships (the 
impact of FMs  on  Requirements,  and the effectiveness of 
PACTs  against FMs). 

3. Views  and  Focus 
3.1. Desiderata 

Many systems offer multiple views into large 
information sets. Views can  be  used to  present the same 
information in different ways, or to  present different (or 
only marginally  overlapping) subsets of  information.  For 
example, the widely popular Unified  Modeling 
Language [UML] uses  numerous different views into its 
requirements and  design information. The  Knowledge- 
Based Requirements Assistant (KBRA) [Czuchry & 
Harris, 19881 pioneered many of the multiple-view 
techniques for requirements engineering. 



when switching  between  views. As  the amount of 
information  and the  number of different views increases, 
the  chance of  confusion  rapidly increases. For  example, 
it is all  too easy to loose  track of  the correspondence 
between the same elements presented in different views. 

We have  found the following practices ameliorate the 
problems of  navigation  between  multiple  views: 

*Keeping  the  number of kinds  of views to a 
minimum, reusing  the same  kind  of  view for 
multiple purposes. 

0 Automatically  maintaining the equivalence  between 
overlapping  information  displayed  in different 
views. 

0 Where feasible, replicating another  view’s 
information in the  current view. 

0 Where  necessary, judiciously abbreviating 
information. 

0 Highlighting the  current focus of concern. 

Keeping the number of kinds of views to a  minimum, 
reusing the same  kind of view for multiple purposes. In 
DDP there are four  major  kinds of views - tree views, 
matrix  views,  bar chart views,  and item-specific views - 
through  which to enter, inspect and adjust information. 
Tree views are used to display and restructure each  of 
the three major classes of DDP hierarchically structured 
objects: requirements,  FMs, and PACTs.  Likewise,  bar 
chart views are used to display the results of numerical 
computations  on  each of the current selections of these 
objects. Matrix  views are used to enter, inspect and 
adjust the interrelationship information, specifically 
between  requirements  and FMs (how  much of a 
requirement is lost if a FM occurs)  and  between  PACTs 
and  FMs  (how effective a  PACT will be at  reducing the 
likelihood of a FM). Item-specific  views  display  a single 
item at a  time for  data entry, inspection or adjustment. 
For  example,  when  entering  a  new  requirement, the 
item-specific  view  presents all  the possible  data fields 



that  can hold  values associated with  a  requirement (title, Grey-background cells display headers,  names and 
importance, textual description, etc.). aggregate values, while  white-background cells display 

the numerical  value  of the relationship between the 
Automatically maintaining the equivalence 

between overlapping information displayed in 
different views. Changes  made  to information 
through  one view  are immediately reflected in  all 
the  other views of that same information. For 
example, when the user adds  a new requirement 
through  the tree view, that same  requirement is 
automatically  added  to the bar-chart view. 

However, as the scale of the application 
increases, the large amount  of  information 
involved can make recalculations 
computationally  expensive.  For  example, 
suppose the user adjusts the effectiveness of  a 
PACT  on  a FM (the PACT’S effectiveness is a 
numerical measure of the degree to which it 
reduces the likelihood of the FM). That FM 
might  impact many requirements.  The expected 
attainment  of each of  those  requirements must  be 
recomputed, so as to adjust their bars in the 
requirements’ bar chart display accordingly. If 
this  display is in “sorted” mode, it must be re- 
sorted. 

We  ameliorate this  by running the 
automatic re-computation and redisplay in 
the  background, so that the user  can make 
additional changes  without  waiting for it to 
complete.  Even this can be  irksome when 
responsiveness of the display diminishes 
noticeably, and so we provide the user the 
option  to turn off  automatic  re-computation 
and display, perform a  batch  of  changes, 
and  turn it back  on again. 

Where appropriate, replicating another 
view’s information in the current view. 
Multiple views circumvent  the impossibility 
of  displaying all  of a large amount  of 
information in a single screen. However, if 
the  views  overly-fragment  the  information, 
relating one view to another  can  be hard. In 
response, we look for opportunities to 
replicate one view’s information in another 
view.  This is appropriate if it aids the user’s 

Figure 2. Tree  view of FMs 

RxFM 0 or empty = none lost 1 = 100% lost 

Figure 3. Matrix view of Requirements (rows) x FMs 
(columns) 

navigation and can  be achieved  with little cost (notably, 
screen space). 

For  example, the portion  of  the tree view  in Fig. 2 
shows  the names, hierarchy, checked I unchecked status, 
and  expandedunexpanded status of FMs. 

Much of this is replicated (but in a different style) in 
the corresponding portions of the matrix views - for 
example, the Requirements  x  FMs  matrix shown  in Fig. 
3. Requirements are listed  in rows, FMs  in columns. 

.* I 

corresponding FM and requirement  (namely, the 
proportion of the requirement that would  be lost if  the 
FM were  to occur). 

Observe that the tree hierarchy is replicated by use of 
“header” cells in the matrix. For  example the tree view 
shows JIT as a  parent  of Overall grafting,  Smell, etc. 
The  matrix view  uses the topmost  FM  header cell to 
display JIT and spanning all the next-level header cells 
that are its included children, Overall ..., Smell, etc. 
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Figure 4. Hierarchy and focus highlighted in 
the tree  view 

The  expandedunexpanded statuses of tree nodes are also 
indicated in  the matrix view,  by prefixing unexpanded 
nodes’ names  with “[+I”. Both of these add navigational 
value - within  the matrix view the user can readily 
discern where a column falls within the hierarchy, and 
whether or not  it corresponds  to  an  unexpanded  node. 
Also,  note that  both of these elements  of  information  can 
be  provided at a small cost of  screen real estate. 

Where  necessary, judiciously abbreviating 
information. Abbreviating one view’s information when 
showing it in  another  view  is often a good approach.  For 

interaction  management tools can also take good 
advantage of them. 

Highlighting the current focus of concern. DDP 
employs a notion of “focus” to draw users’ attention to 
specific  items in the  various  views. Its primary  purpose 
is to aid in quickly focussing on some current item(s) of 
particular  interest, but also serves to  anchor users as they 
navigate fiom one  view to another. 

Fig. 4 shows the FM Hop to  Hop as  being the 
current  focus,  denoted  by  the blob just  to the right of its 
check  box.  Note that its ancestry nodes (Overall 
grafting, and JIT) also have these same blobs. This 
highlighting of  a  node’s ancestry is done automatically 
by DDP as soon  as the user clicks on  a leaf node. 

Focus in the  matrix  view  is shown in Fig. 5. The  same 
FM that  was  in focus in Fig. 4 is in focus  here - Hop  to 
Hop. Its  column of data cells is highlighted, as is its 
entire  ancestry (header cells JIT and Overall Grafting). 
Similarly, a row of cells is  highlighted corresponding to 
the  requirement that is also in current focus. 

A uniform coloring scheme pervades DDP - a 
different  color  for  each of the categories Requirements, 
FMs  and  PACTs. The default scheme (not visible in this 
black-and-white reproduction) is: 

0 Blue for  requirements 
Red for  FMs 
Green for  PACTs 

Fig. 6 shows  the corresponding  focus on the “Risk 
Balance” bar chart (whose columns  correspond  to 
FMs).  The blob  beneath the third column  corresponds  to 
same  FM as highlighted  in  the previous two figures. The 

rigk clicking on a cell, are also 
employed. The user-interfaces of - 
many existing tools make us 

I I 
-. , 

Figure 5. Hierarchy and focus highlighted in the matrix view 
familiar with these kinds of 
capabilities, and requirements 



number  beneath  each FM  bar  is  the same  as that FM’s 
number in the tree view.  The presence of a “+” beneath  a 
bar indicates it corresponds to an unexpanded  parent 
FM. 

F 

Risk Balance (log scale) 
(19 

]re 6. Focus in the bar chart view 

4. Selection  and Hierarchy 
4.1. Desiderata 

When handling  voluminous amounts of  information, 
it is important  to  provide users  the  ability to select 
subsets of  information to work  with. This  permits  them 
to  focus their attention on the just the information 
relevant to the issues at hand, and  avoid distraction of 
extraneous information. Without  the capability to 
perform  such selection, most obvious display regimes 
become  unwieldy as the volume of  information  grows 
beyond trivial amounts.  For example, users of the DDP 
precursor tool found  they were continually scrolling 
across  extensive matrices, because the full set of  data 
was  too large to fit onto a single screen. 

4.2. DDP  Realization 
DDP  provides the obvious capabilities for deleting 

information that  is irrelevant to the task  in hand.  For 
example, the user can start from a pre-formulated set of 
FMs,  and delete those that are not applicable to  the 
current design. Those deleted FMs  then play  no  further 
role in the user’s world. 

More interesting are the capabilities for temporary 
removal of information. Temporary implies the 
capability to reverse the  removal. DDP uses “check 
boxes”  to both control the removal  process (information 
is temporarily  removed by unchecking,  and  re- 

introduced  by checking), and to identify what 
information is available for such re-introduction. DDP 
also employs the familiar notions  of  expanded  and 
contracted trees, using  Microsoft WindowsTM 
conventions of “+” and “-” boxes for indicating and 
controlling the status of  expansion  of  the  displayed tree 
(a “+” box means there are undisplayed children of the 
corresponding node; clicking that box causes  expansion 
to take place). MacintoshTM users are familiar with the 
same concept, but  using  arrow symbols in place  of  those 
boxes.  Temporarily collapsing a sub-tree is a  means  to 
remove from  view  the details of its sub-structure. DDP 
harmoniously combines  check  boxes  with tree structures, 
as  described next. 

Figure 2 (repeated for convenience  below) illustrates 
DDP’s combination of  check  boxes  with tree structures. 

.. H$ 9:JIT 
. m@ 10:Overall  grafting 

$ ll:Malfazing/Jaspering  Constraints 
i .  P ---a 15:Operalion i.-...B 16:Excessive  smug  on  quoul in exit 

17:Zip  to  Garbu 
- 8  18:Whoa  blands  to fluffy craft 
: ... 19:Backside  calakak (poi1 yuk  growth) 

iF a$ZO:Hop lo hop 
Q .....H 33:Smell 
?! ....o 37:u9 

! 45:AIK end-to-end  Performance 
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I 8 73:GLOB 

Repeat of Figure 2. Tree view of FMs. 

DDP provides selection and hierarchical structuring. 
They  are  combined so as to operate  harmoniously 
together. A node of a tree is included in the current set of 
information  if  and  only  if  its check  box is checked, and 
all its  ancestors’  check boxes are also checked.  For 
example, Excessive  smug  on quoul in exit is 
included, because  its check  box is checked,  as is the 
check  boxes  of  all  its ancestors (namely, Operation, 
Overall grafting, and JIT). Conversely, Whoa 
blands to fluffy craft is not included, because 
although its  check box is checked, not all of its 
ancestors’ check boxes are checked (Zip to Garbu is 
unchecked).  This  allows for the rapid  selectiodde- 
selection of whole sub-trees at once, by  simply 
checkinglunchecking the root node. 



Experience with using  the tool showed  that  it  is 
common to need to  include  a leaf  node  when one or 
more  of its ancestors are unchecked. Given the above 
interpretation of  checks  combined with hierarchy, this 
implies that all the unchecked ancestor nodes must be 
checked so as to include  the leaf  node  in the current 
selection. DDP accommodates this by automatically 
checking an unchecked node’s ancestors whenever that 
node is checked.  This is preferable to forcing the user to 
perform these steps manually,  or disrupting the natural 
interpretation of  checking  and hierarchy. 

In DDP,  the effect of  checking and tree 
expansion is carried over  to other views, notably 
matrix  and bar chart views.  The tree view’s checks 
and  expansions  determine the set of information 
and its depth  of detail as  displayed in  those  other 
views. In particular, the included nodes at the 
fringe of the tree are displayed. For  example,  Fig 3 
shows the RxFM matrix  corresponding to the 
above selection of  FMs. It displays the six  FMs 
that are the currently included  nodes at the fringe 
of  the FM tree, Malfazing ..., Excessive ..., Hop 
to Hop, Smell, AIK ... and GLOB, corresponding 
to those same  six selected leaf nodes  in  top-to- 
bottom  order in  the tree view.  As  discussed  in the 
previous section, the hierarchy  of the  tree structure 
is also shown  in the header cells of the matrix 
view, and  the status of  unexpanded parent nodes 
indicated by “[+I” prefixes on  names. Note  that  in 
the matrix view the children of  an unexpanded 
parent  node are not displayed; to see these details, 
the user must  return to the tree view. 

the total impact of  a FM  is computed  by  summing  over 
each  requirement the requirement’s  weight  times the 
FM’s impact  on that requirement,  and  multiplying the 
sum by  the  FM’s likelihood. This yields the (a-priori) 
expected impact of that FM. The  DDP tool (like its 
predecessor  spreadsheet-based  proof-of-concept) 
computes this information automatically. Furthermore, 
DDP offers visualizations of the information, as follows: 

Requirements: a column is shown for each 
(included) requirement.  A  fragment  of the requirements 
bar-chart display is shown below: 

5. Summarization  and Aggregation 
5.1. Desiderata 

Summarization  and  aggregation are essential 
techniques  to  condense large amounts of detailed 
information. 

5.2. DDP  Realization 
DDP  manipulates several quantitative relationships 

on  and between its data  elements. Requirements have 
weights - a measure of their relative importance. FMs 
have a-priori likelihoods - their probability of 
occurrence if nothing is done  to inhibit them.  FMs are 
linked  to  requirements by “impact” - the proportion  of 
the requirement that would  be lost if the FM were  to 
occur. PACTs are linked  to  FMs by “effect” - the 
proportional  reduction in the FM’s likelihood  that 
application of the PACT  would obtain. 

The DDP process  computes  a variety of 
summarization  information  from this data.  For example, 

L ” .  , . , , ,  

Figure 7. Bar-chart  view of Requirements 

The  height  of  a  requirement’s  column indicates the 
logarithm of  the requirement’s  weight.  (DDP uses  log 
scales because the application domain is concerned with 
reduction of risk to very small levels). Colors within 
each column  are  used to  convey the current effect of the 
FMs and  selected  PACTs: 

*Blue (shown here  as light gray) indicates the  portion 
of  a  requirement that is unimpacted by any FM. 

*Green  (shown  here as dark  gray) indicates the 
expected loss, due  to  FMs, that has been 
prevented by the current set of  PACTs. 

*Red  (shown here as black) indicates the expected 
loss due to FMs, despite the current set of PACTs 
(since not all PACTs are perfect, some 
expectation of loss typically remains). 

The left-to-right order  of the columns is the same as 
the top-to-bottom fringe requirements in the tree view of 
requirements (and therefore the same  as the left-to-right 
cells of the matrix view  of requirements).  Recall the use 
of the blob to highlight the column  in current focus. 



Like  many tools, DDP provides for Pareto diagrams The  height  of  a FM's column indicates the logarithm 
by offering the ability to sort the data displayed in  bar of the FM's  summed impact on all included 
charts. The figure below  shows the left fragment  of the requirements. Colors within  each  column are used to 
same set of  requirements sorted by the height  of the red convey the current effect of selected PACTs: - 
column, i.e., the amount  of  expected loss of  requirement 
weight: 

Requirements [log scale] 
23 Operation  ovedpost  Environmental  Reqts = TBD, except  moolial 

""""""""""""""""""" 

15 22  8 6 9 5 12  14 7 45 11 19 27 29 28 40  42  47 ! 
. . , , . , , , ,, . . 

Figure 8. Sorted bar-chart view of Requirements. 
I_ I 

.Green (shown  here  as  dark  gray) indicates the 
expected loss due  to that FM that has been 
prevented by the current set of PACTs. 

*Red (shown  here  as  black) indicates the expected 
loss due to FMs, despite the current set of 
PACTs. 

As with the requirements  bar chart, the left-to-right 
order is  by default the same  as the top-to-bottom  order 
in the tree view, and  an  option to sort by  height  of red 
bars is available. 

DDP also computes  numerical  summarizations  of 
"aggregated" information. Section 4 discussed the tree- 
view's control of hierarchical structuring, and  how that 
is replicated in the matrix view - the rows  and  columns 
of a  matrix are the current "fringe" nodes of the 
corresponding trees. When a sub-tree contracted, the 
corresponding single row/column  corresponds  to that 
entire sub-tree. In particular, the numerical  values in 
each cell in  that row/column are aggregations of the 
values  within the contracted sub-tree. 

In the Requirement  x  FM  matrix  view, impact  is 
expressed  as the proportion of the requirement that 
would  be lost. The  aggregate  requirement is composed 
of  all its sub-tree's leaf requirements,  and  hence the 

Note that the highlighting of the in-focus requirement aggregate proportional loss & a  combination (suitably 
(via the blob  beneath its column)  shows where  that weighted  by the relative importance  of the requirements) 
requirement has moved to after sorting. of its leaf-node  requirements' loss (it should be  clear 

why we  need  mechanization  to  compute this!). For 
FMs: a column is shown for each (included) FM. A example, the upper portion of Fig. 10 shows  requirement 

fragment  of the FM bar-chart display is shown  below: Oper ... as unexpanded; its numerical  values are 
aggregations  of its constituent requirements.  The  lower 

12 13 14 16  18 19 22 23% 26  27  28  30 31  32  34  35  36  38 39 

with sub-tree collapsed, shows the height  of the bar 
corresponding  to the total failure mode  impact on the 
weighted  requirement (Fig 11). We see here that the  red 
portion  of this bar  is relatively high as compared to 
most  of the other visible bars. In this  case the user 
probably would decide to zoom in to the details by 
expanding that sub-tree of  requirements. If, however, 
the red bar had  been relatively low, the user  might have 

, .  , been content, and never  needed  to  expand the sub-tree. 

Figure 9. Bar-chart view of FMs In summary, we perceive  summarization and 
aggregation  helps users to  grasp the big picture, and to 
draw  to their attention those areas where  they need to 

investigate the details. 



Figure IO. Collapsed  (top)  and  expanded 
(bottom)  sub-tree in matrix 

6. Versions 
6.1. Desiderata 

Some form of version control is indispensable if 
requirements interaction management is to be scalable. 
Multiple versions can arise as a result of specialization 
( e g ,  a baseline set of information is specialized for the 
task in  hand), concurrency (e.g., when subdividing a 
large task among multiple people, who work in parallel), 
and investigation  of alternatives (e.g., “what-if’ 
explorations). Version control must provide an 
appropriate mix of isolation and dependency among 
different versions. Isolation is needed to ensure that 
modifications made  in  one version do not inadvertently 
propagate to others. Conversely, dependency is needed 
to ensure that modifications made in one version do 
propagate to  other versions that are in an appropriate 
correspondence to the modified version. 

DDP’s  design continues to evolve. We anticipate the 
need to work on the following areas, all  of which will 
likely  further exercise the need for scalability: 

Yet more data: As more institutional data is 
gathered, the data sets will grow fixther. Additional 
techniques may be needed if scaling is to accommodate 
an order of magnitude or more increase in information. 

Process: At present the DDP tool offers only 
rudimentary guidance on how to proceed through the 
major steps of the DDP process. This could  be improved, 
particularly to help users navigate within, and between, 
stages of brainstorming, decision-making, etc. 

Merging: We know we need to  add support for 
concurrent DDP activities, followed by a merge process 
to combine  the separate results. Dr. Barbara Gannod of 
Arizona State University has studied the issue with DDP 
in  mind,  and  her development of tool support for this is 
in progress. 

Enrichment of the types of data and relationships. 
We  may  choose to augment FMs with probabilistic 
distributions, and extend the computations accordingly. 
We  may choose to cross-reference requirements to the 
design structure. Enrichments such as these may well 
induce the need for further kinds of views. Once we 
include  cost information for PACTs, we can begin to 
automate  the search for optimal sets of PACTS. 

Integrate with design processes - DDP’s prime focus 
is on planning for risk management. DDP could benefit 
from  integration with design activities, and the processes 
and support tools that exist for them. Note that the 
outcome  of  DDP is a set of choices of PACTs (risk 
mitigants). In  the course of performing those PACTs we 

6.2. DDP  Realization 

We foresee all these issues arising in the application 
of DDP to risk tradeoff analysis. For example, a 
particular project will want to inherit and specialize pre- : Requirerr 
built trees of typical FM. Multiple people will want to  be 
able work on different parts of the requirements 
elicitation, and thereafter merge their results. Users will 
want to study different choices of sets  of PACTs side- 
by-side. 

To date, DDP’s support for these aspects of version 
control is only partially complete. DDP data is already 
set up to be cumulative, i.e.,  any changes (whether they 
be additions, updates or deletions) are recorded as 
additional data, associated with a version. For example, 
if a FM is deleted, then internally the data record 
corresponding to that FM  is retained, and an additional Figure 11. Collapsed  sub-tree in  bar 
data item is created, indicating the deletion and the chart 



might learn additional information that should  be  fed 
back  into  a DPP-like  process - i.e., DDP might  become 
an  ongoing activity continually kept in step  with 
development. 

8. Related Work and Conclusions 
In the  arena of requirements interaction management 

we  are  aware  of several other efforts beginning to 
address the issues  of scalability. 

All  processes for requirements interaction 
management share the concern  of how to deal with 
activities that incur a cost that grows  more-than-linearly 
with  the number of  requirements.  For  example, 
requirements prioritization or conflict resolution is often 
based on considering all painvise  combinations of 
requirements,  an  O(n2)  operation for n  requirements. 

[Robinson & Pawlowski,  19981 present  a  method  that 
circumvents this quadratic growth  by identifying “root” 
requirements (“which represent key  concepts  from 
which other requirements are derived  through 
elaboration”). The end result of their method is a 
classification hierarchy of  requirements.  Their  method 
helps construct this hierarchy. [Ryan & Karlsson, 19971 
also consider strategies to address this same  problem, 
e.g., taking  advantage  of the knowledge of mutual 
exclusion between requirements  to  automatically rule 
out  all subsets in which both  those  requirements are 
simultaneously included. In the WinWin system 
[Boehm & In, 19961,  this same issue is addressed  by  use 
of  a quality attribute hierarchy  to  narrow attention to 
those  requirements that conflict over the same quality 
attribute. 

DDP would appear to face these same  problems in 
completing the requirements  x  FM, and PACT x FM 
matrices. However, DDP users seem adept at organizing 
their information into hierarchies, such that the subsets 
of  information that  could plausibly interact are easy to 
narrow  down. Also, the tool’s use of summarization  and 
aggregation (section 5) can help users recognize  when 
they  need not  descent to  lower levels of detail. 

Graphical visualizations of  requirements  information 
are  also  emerging. [Park et al, 19991 present their 
Distributed Collaboration Priorities Tool  (DCPT),  a 
companion tool to WinWin that helps prioritization of 
development items  and  risk reduction. DCPT  makes 
repeated use of a variety of styles of  2-D charts whose 
axes represent orthogonal  continuous-valued  measures 
(e.g., importance vs. difficulty; probability vs. loss). 
These are used to display information  to users, to  help 
them  make selections (e.g., based  on Return-On- 
Investment as seen in the Importance vs. Difficulty 
chart). Focal  PointTM [Focal Point  AB], likewise uses 2- 
D charts to show importance (value) against cost, and 
integrates check-boxes into this same chart for intuitive 
use  and ease of (de)selection. 

In DDP the  primary  objective  is to  choose  a cost- 
effective set  of  PACTS  whose  net effect will reduce risk 
to an acceptable level.  However, to date cost information 
(schedule, budget,  personnel or whatever) is not 
recorded! This  leaves  it to the insight of users to make 
the costhenefit tradeoffs. The main value  they  obtain 
from the tool is the understanding of the expected loss of 
requirements.  Perhaps because of this state of affairs, we 
have the found  bar chart displays described in Section 5 
to  be the most  appropriate means to portray quantitative 
aspects. 

DCPT use the aforementioned  2-D presentations for 
assisting multiple users to reconcile differences (e.g., 
over the spread of opinions  on the importance vs. 
difficulty of  a single requirement). 

To date we have  used DDP primarily in a non- 
distributed fashion, were the multiple stakeholders are 
together at the same time and place. This  seems  to 
circumvent the need  to  provide elaborate support for 
maintaining multiple conflicting opinions 
simultaneously. Instead, we find that users almost  always 
are solve the  problem  in  one of the following ways: 

*Resolve the  issue  by  immediate discussion, yielding 
a single agreed  upon result, which  can  then  be 
entered. 

*Defer decision  until later. The tool offers the option 
of entering a non-numerical  value into matrices 
(e.g., “??? this is either 0.1 or O S ’ ’ ) ,  which 
the tool ignores for performing  numerical 
calculations, but displays for users to locate and 
respond to at a later  date. 

.Realize  that  they  are talking about related, but non- 
identical, cases. Usually this results in a 
bifurcation (e.g., what  began as a  disagreement 
on  the  extend to which a particular FM impacts a 
particular requirement leads to  refming that FM 
into  two children of the original, each with their 
own  impact  value).  DDP’s tree manipulations 
support this. 

Graph structures, rather than simply tree structures, 
are featured in several groups’  methodologies for 
requirements interaction management.  For  example, the 
KAOS methodology employs  graphs  to represent a 
semantic  network of goals, constraints and objects. The 
KAOS support  environment - GRAIL [Darimont  et al, 
19971 - provides  a graphical editor for these structures. 
GRAIL  uses multiple  views - the graph view for high- 
level  view of  requirements,  a text-based view for 
entry/editing of the details, and a  hypertext view for 
navigating  through a textual representation. As yet, DDP 
has not  needed to display graph structures, so we  do  not 
have a direct equivalent  of this kind  of view. 

We have  discussed and illustrated scalability 
mechanisms,  embodied in a working tool that supports 



NASA’s  Defect  Detection and Prevention  (DDP) 
process. Experience  with  using the tool on  real examples 
had  convinced us of the need for addressing scalability, 
and led to our  development  of these capabilities. 
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